Indago is an accredited, open-access journal that seeks to promote knowledge of natural and cultural heritage by publishing high-quality, peer-reviewed scientific research. Previously known as Navorsinge van die Nasionale Museum, Indago is published annually for the National Museum, Bloemfontein, South Africa. Manuscripts relevant to all topics of the natural and social sciences in Africa are accepted, including but not limited to botany, zoology, palaeontology, archaeology, anthropology, history, fine arts. Accepted manuscripts are published online, freely accessible through the museum webpage. Hardcopy issues are published yearly. Authors will bear full responsibility for the factual content of their publications and opinions expressed are those of the authors and not necessarily those of the National Museum. All contributions will be critically reviewed by at least two appropriate external referees. Contributions should be addressed to: The Editor-in-Chief, Indago, National Museum, P.O. Box 266, Bloemfontein, 9300, South Africa and e-mailed to Brigette.cohen@nasmus.co.za. Instructions to authors appear at the back of each volume.

Editor-in-Chief
Brigette F. Cohen (PhD, UCT), Florisbad Quaternary Research Department, National Museum, Bloemfontein

Associate editors
Natural Sciences: Gimo M. Daniel (PhD, UP), Terrestrial Invertebrates, National Museum, Bloemfontein
Human Sciences: Derek Du Bruyn (PhD, UFS), History Department, National Museum, Bloemfontein

Consulting Editors
Prof. C. Chimimba (Department of Zoology and Entomology, University of Pretoria, South Africa)
Dr J. Deacon (South African Heritage Resources Agency, Cape Town, South Africa – retired)
Dr A. Dippenaar-Schoeman (ARC – Plant Protection Research Institute, Pretoria, South Africa)
Dr A. Kemp (Ditsong National Museum of Natural History, Pretoria, South Africa – retired)
Dr D.T. Rowe-Rowe (Ezemvelo KZN Wildlife, Pietermaritzburg, South Africa – retired)
Prof. B.S. Rubidge (Centre of Excellence for the Palaeosciences, University of the Witwatersrand, Johannesburg, South Africa)
Prof. A.E. van Wyk (Department of Botany, University of Pretoria, South Africa)
Prof. A. Wessels (Department of History, University of the Free State, Bloemfontein, South Africa)

Layout
Marelie van Rensburg, Design Department, National Museum

Hard copies of Indago are available from the Library at the National Museum, Bloemfontein. Free access to electronic copies (PDF) via the Museum’s website www.nasmus.co.za.

Cover illustration
Buchery marks on goat bones (Photos: S. Badenhorst)
This year has presented many new challenges to all of us both in the academic world and beyond. For museums globally it has challenged us to find new ways to engage with the public with an increasing reliance being placed on the virtual environment. We have all had to struggle with the challenges of balancing domestic and work needs, especially when working from home – how single parents have managed so well constantly amazes me. For some this time has been a struggle, financially, emotionally and even medically. But with the roll-out of vaccinations – the fastest production of vaccinations (or any major medical treatment) in the history of medicine – we can start looking toward a familiar, if changed, future.

For Indago, this year has been a challenging time, in its own right, with the appointment of a new editorial committee, consisting of Dr’s Brigette Cohen (EiC), Gimo Daniel and Derek Du Bruyn. The previous committee steered the journal through good times and bad including a name and style change and they have made Indago what it is today. I would like to thank Mike Bates (EiC), Shiona Moodley and Marianna Botes for all the hard work they have done for the journal over many years. And on a personal level to thank Mike for his kind assistance with the handover process. A new committee means changes and we have made various updates to make Indago more accessible and to streamline the submission process. They include uploading the journal’s back issues onto the updated museum publication website where they are available as open access documents to the public and researchers alike. Publishing new papers with digital object identifiers. Expanding our scope to cover a wider array of disciplines. Indago is one of only a small number of museum journals still publishing (and with an unbroken record of over 60 years) and while 2020 may have been a quiet year for research we already have some exciting new projects on the horizon, including a special issue on Predation Management coming up soon.

Taking on an editorialship (during a pandemic) has been a tight learning curve and I am humbly excited to present volume 36 of Indago. I am looking forward to a prosperous tenure as Editor-in-Chief of this remarkable journal.

Dr Brigette Cohen

Editor-in-Chief
ACKNOWLEDGEMENTS

The following individuals contributed to the quality of *Indago* Vol. 36 (2020) by serving as reviewers. Their assistance is gratefully acknowledged.

Dr Lucinda Backwell (Argentina)
Dr Aurore Val (Germany)
RESEARCH ARTICLES
NATURAL SCIENCES

The Frequency of Butchery Marks on Goat (Capra hircus) Remains from Pastoral Khoekhoe Villages at Gobabeb, Namibia

Shaw Badenhorst & Jackson S. Kimambo .. 1–12
The Frequency of Butchery Marks on Goat (*Capra hircus*) Remains from Pastoral Khoekhoe Villages at Gobabeb, Namibia

Shaw Badenhorst1* & Jackson S. Kimambo1

1Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, Wits, 2050, South Africa
E-mail: shaw.badenhorst@wits.ac.za
*Corresponding author

INTRODUCTION

Butchery marks provide direct evidence of meat-eating by hominins (e.g., Bunn 1981; Blumenschine 1995; Blumenschine et al. 1996; Merritt 2012). The frequency of butchery marks on skeletons of animal prey remains an important avenue of research in zooarchaeology (Lyman 1994). Data on butchery are often used by zooarchaeologists to infer the nature of carcass processing from archaeological faunal samples (Egeland 2003). The frequency of butchery marks on animal remains relates to the agents involved in the butchery process (Lyman 2005). These are, first, the animal that is butchered, including aspects such as size, species, age, sex, and preparation of the meat (e.g., Binford 1981; Lyman 1992; Milo 1998; Domínguez-Rodrigo & Barba 2005; Pobiner & Braun 2005; Domínguez-Rodrigo & Traveda 2009). Second, the tools used also influence the frequency of butchery marks on bone. Important aspects of the tools include the use of retouched vs. un-retouched tools, the type of tool, the raw material used, and hafted vs. hand-held tools (e.g., Walker & Long 1977; Olsen 1988; Greenfield 2008; Domínguez-Rodrigo & Traveda 2009; Leenen 2011). Third, the butcher and procedures used are additional factors, including the techniques and experience of the butcher, as well his/her age, sex and strength (e.g., Frison 1971; Moooketsi 2001; Parsons & Badenhorst 2004). The frequency of butchery evidence is further distorted by a variety of post-depositional processes (Thompson 2005), such as weathering, scavenging, attrition (Brain 1981; Lyman 1994), analytical, retrieval and excavation biases (Driver 1982; 1991), as well as quantification units (Otárola-Castillo 2010). The use of magnification often results in greater recognition of butchery evidence (Plug 2004; Collins 2013; also Reynard et al., 2014). We recently investigated a collection of modern goat (*Capra hircus*) remains from Gobabeb, Namibia to document the frequency of butchery marks.

GOBABEB GOATS

Palaeontologist, C.K. Brain collected goat remains from villages occupied by Topnaar Khoekhoe pastoralists in the Gobabeb region of central-western Namibia in the 1960s (Fig. 1). Brain (1967a, b; 1969; 1981) was instrumental in determining that animal skeletal parts from archaeological and fossil sites are severely influenced by bone density attrition.

Gobabeb is located 110 km southeast of Walvis Bay in central-western Namibia. Around Gobabeb, the main channel of the Kuiseb River is between 50 and 80 m wide, with a riparian flood plain of 20 to 200 m on each side (Eckard et al., 2013). The Kuiseb River is usually dry and only flows occasionally after heavy rains. Subsurface flow is considerable though, allowing for the growth of dense vegetation around the riverbed. The Khoekhoe dig shallow wells in the riverbed, providing for all their water needs. At least 18 villages have existed along the Kuiseb River, with only eight occupied by the 1960s, and a total popu-
lation of less than 150. Daily life of the Khoekhoe revolved around their goat herds. A small quantity of tobacco was grown, but people subsisted entirely on goat milk, goat meat, naras melons (*Acanthosicyos horridus*) and the sale of goatskins. The goats lived entirely on the vegetation of the dry riverbed, in particular from dry seeds of ana trees (*Acacia alhida*). In these arid environments, four miles of riverbed were required to provide the 460 goats in one village with sufficient grazing. A total of 2000 goats were found in the eight villages (Brain 1967b).

Between 1965 and 1967, Brain collected 2373 goat specimens from the eight villages. These were all the available remains visible on the surface at the time. A person’s wealth is measured by the size of his goat herd and, as a result, goats were not frequently slaughtered. Nevertheless, Brain (1967a, b) observed and interviewed the Khoekhoe about their butchery techniques. Brain (1967b) noted that the Khoekhoe caused considerable damage to goat bones, during an experimental butchering. In total, 15 caudal vertebrae were chewed and swallowed, while limb bones such as femora and metapodials suffered severe damage at the epiphysial ends. Based on the number of horns in the sample he collected, Brain (1967b) calculated a minimum of 190 individuals. However, he regarded this number as too high. In arid environments, the horn sheath is almost indestructible, and it lasts for several years after other traces of bone have disappeared. Part of the sample of goat bones came from two deserted villages, which had not been inhabited for over ten years. At these two villages, nearly all the remains left were horn. The Gobabeb region receives less than 25 millimetres of rain per year, and in other regions with higher rainfall, horns would disappear rapidly (Brain 1967b).

METHODS

We recorded the elements, portion of element (after Dobney & O’Rielly 1988) and sides of the goat remains. The ages of the long bones were based on epiphysial fusion, divided into three categories, namely adults, sub-adults and juveniles. The results were compared to tooth eruption data (Brain 1967a). We noted all butchery (cut and chop) marks using naked-eye observations. We further studied a random sub-sample of bones using an x10 hand-lens for any modifications not visible without magnification. These modifications were quantified by a simple count (present vs. absent) and recorded based on skeletal element and portion. For example, a distal humerus shaft with distal articulation containing various cut marks was counted as one modification. We separated cut marks, which are elongated, narrow grooves often V-shaped in cross-section with flat sides; from chop marks, which appear as wide U-shaped grooves (Potts & Shipman 1981; Shipman & Rose 1983, 1984; Marshall 1989). We took the greatest length of all the elements we investigated and grouped them in size categories of 1 cm to determine the general size of the specimens compared to those from archaeological assemblages. We used the Number of Identified Specimens (NISP) to quantify the remains. For the present study, we used a basic three category weathering classification of bones displaying low sun exposure, those that are sun-bleached (appearing white), and those specimens that are severely weathered (showing cracking and a chalky bone surface). Many aspects of the Gobabeb sample remain unstudied, including the length and orientation of butchery marks, detailed weathering stages following Behrensmeyer (1978), long bone breakage, and separating carnivore from human chew marks. These will be dealt with in future studies.

RESULTS

The original assemblage collected by Brain encompassed 2373 specimens (Brain 1967a, b). We studied a sub-sample of this, numbering 1428 specimens, representing 60% of the total assemblage. The remaining 945 specimens consist mainly of skull fragments, horn cores, unidentified bone flakes and loose teeth (Table 1). There is a further slight discrepancy between our sample and that collected by Brain (1967a). The reason for this is that our sample is based on those specimens measured by Badenhorst & Plug (2003), which excluded many shaft fragments and other specimens lacking measurable morphologies. In some cases, our sample contains more specimens than that reported by Brain (1967a). It is possible that Brain (1967a) refitted some specimens, or that a few more bones were collected during his visits in subsequent years.

The sample, weighing a total of 13 258.8 g used in this study, includes young, sub-adult and adult individuals (Table 2). The sample is dominated by spec-
imens that are classified as adult (n = 688). Aging of teeth also found a dominance of adult goats, although almost half of the limb bones of the original sample derived from immature individuals (Brain 1969). Overall, the most common elements in the sample are tibiae (n = 230), humeri (n = 189), ribs (n = 183), mandibles (n = 148) and femora (n = 115). Most elements are represented in the sample, but the following elements are absent: caudal vertebrae, carpals, tarsals, sesamoids and isolated teeth. Most of the specimens measured between 5 and 120 cm in length, followed by relatively few specimens that measure under 5 cm or above 13 cm (Fig. 2). No specimens smaller than 1 cm were collected, whereas the largest specimen was between 22 – 23 cm.

Most specimens display some form of weathering, mostly sun bleaching (Table 3, Fig. 3). This indicates that few bones were fresh when Brain collected them and that most specimens had been exposed to the natural elements in the arid environment for a few months.

When considering butchery marks on the Gobabeb goat remains, a number of interesting patterns emerge (Table 4, Fig. 4). First, some elements have no evidence of butchery, including cervical (excluding the atlas and axis), thoracic and lumbar vertebrae, and astragali. Second, despite unequivocal evidence that goats were slaughtered and consumed, only 15% of the overall sample contains butchery evidence. Third, cut marks are more common on the goat remains than chop marks, with few specimens showing a combination of the two butchery techniques. Fourth, the incidence of butchery varies considerably between elements, from common (above average in descend-
Table 2. Skeletal elements and age groups of the Gobabeb goats (NISP).

<table>
<thead>
<tr>
<th>Element</th>
<th>Young</th>
<th>Sub-Adult</th>
<th>Adult</th>
<th>Indeterminate</th>
<th>Total</th>
<th>Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull</td>
<td>4</td>
<td>2</td>
<td>20</td>
<td>9</td>
<td>35</td>
<td>2073</td>
</tr>
<tr>
<td>Maxilla</td>
<td>18</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>34</td>
<td>1134</td>
</tr>
<tr>
<td>Mandible</td>
<td>6</td>
<td>71</td>
<td>71</td>
<td>-</td>
<td>148</td>
<td>3993</td>
</tr>
<tr>
<td>Atlas</td>
<td>-</td>
<td>1</td>
<td>13</td>
<td>-</td>
<td>14</td>
<td>336.1</td>
</tr>
<tr>
<td>Axis</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>8</td>
<td>138</td>
</tr>
<tr>
<td>Thoracic</td>
<td>8</td>
<td>6</td>
<td>12</td>
<td>-</td>
<td>26</td>
<td>56</td>
</tr>
<tr>
<td>Lumbar</td>
<td>18</td>
<td>5</td>
<td>22</td>
<td>-</td>
<td>45</td>
<td>84.3</td>
</tr>
<tr>
<td>Sacrum</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>25.2</td>
</tr>
<tr>
<td>Rib</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>183</td>
<td>573</td>
</tr>
<tr>
<td>Scapula</td>
<td>5</td>
<td>2</td>
<td>27</td>
<td>-</td>
<td>34</td>
<td>488.3</td>
</tr>
<tr>
<td>Pelvis</td>
<td>1</td>
<td>2</td>
<td>45</td>
<td>-</td>
<td>48</td>
<td>312</td>
</tr>
<tr>
<td>Humerus</td>
<td>29</td>
<td>2</td>
<td>139</td>
<td>19</td>
<td>189</td>
<td>972.80</td>
</tr>
<tr>
<td>Femur</td>
<td>16</td>
<td>4</td>
<td>37</td>
<td>58</td>
<td>115</td>
<td>406.4</td>
</tr>
<tr>
<td>Radius - Ulna</td>
<td>8</td>
<td>-</td>
<td>63</td>
<td>-</td>
<td>71</td>
<td>497.3</td>
</tr>
<tr>
<td>Radius</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>14</td>
<td>54</td>
</tr>
<tr>
<td>Ulna</td>
<td>7</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>8</td>
<td>10.1</td>
</tr>
<tr>
<td>Tibia</td>
<td>11</td>
<td>1</td>
<td>72</td>
<td>146</td>
<td>230</td>
<td>497.3</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>15</td>
<td>4</td>
<td>45</td>
<td>-</td>
<td>64</td>
<td>287.2</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>22</td>
<td>4</td>
<td>46</td>
<td>-</td>
<td>72</td>
<td>995</td>
</tr>
<tr>
<td>Metapodial</td>
<td>7</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>12</td>
<td>21.5</td>
</tr>
<tr>
<td>Astragalus</td>
<td>1</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>10</td>
<td>56.8</td>
</tr>
<tr>
<td>Calcaneum</td>
<td>5</td>
<td>-</td>
<td>13</td>
<td>-</td>
<td>18</td>
<td>108.2</td>
</tr>
<tr>
<td>Navicular Cuboid</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>7.3</td>
</tr>
<tr>
<td>Phalange</td>
<td>24</td>
<td>-</td>
<td>22</td>
<td>-</td>
<td>46</td>
<td>132</td>
</tr>
<tr>
<td>Total</td>
<td>219</td>
<td>106</td>
<td>688</td>
<td>232</td>
<td>1428</td>
<td>13258.8</td>
</tr>
</tbody>
</table>

Figure 2. Length categories (mm) of goat remains from Gobabeb.
When considering the occurrence of butchery on long bones only (Table 5), the highest number of butchery modifications is recorded on the distal articulation of the humerus and the proximal shaft of the radius-ulna (the latter usually found articulated in the collection). No butchery was recorded on the distal shaft or articulation of metapodia. Overall, specimens with higher frequencies of butchery marks correspond to the elements Brain (1969) observed receiving severe damage during slaughtering (Table 6). In some cases, Brain (1969) observed no damage during butchery on elements such as the distal humerus, yet they sustained some of the highest frequency of butchery marks.

We selected a random sample of 100 long bone specimens and studied them with an x10 hand-lens in an effort to increase the number of butchery marks (Table 7). We were only able to identify one additional butchery mark that was missed during the naked-eye analyses.

DISCUSSION & CONCLUSION

The Gobabeb sample displays a high frequency of bones that are weathered. This is to be expected given that the bones were exposed to the sun in an arid environment (Brain 1967a). The degree of weathering, as well as the length of time causing weathering is dependent on factors such as context and geographical location (Behrensmeyer 1978). Weathering affects the preservation of butchery marks (Gifford-Gonzalez 1989) and it is likely that weathering contributed at Gobabeb to the disappearance of butchery evidence, especially on heavily weathered bones whose outer surface had become chalky. Chewing damage by people (Brain 1969) also likely obscured butchery marks. Despite the influence of weathering and chewing damage, the percentage (15%) of butchery evidence on the goats from Gobabeb is higher than that usually recorded for Early and Middle Iron Age sites from South Africa (Table 8) where sheep dominate faunal assemblages (Badenhorst 2018). These
Table 4. Frequency of butchering modification on the Gobabeb goats.

<table>
<thead>
<tr>
<th>Element</th>
<th>Cut Marks</th>
<th>Chop Marks</th>
<th>Cut + Chop Marks</th>
<th>Total Butchering</th>
<th>Total Number in Assemblage</th>
<th>% Butchered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull, Maxilla</td>
<td>9</td>
<td>18</td>
<td>-</td>
<td>27</td>
<td>69</td>
<td>39</td>
</tr>
<tr>
<td>Mandible</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>26</td>
<td>148</td>
<td>18</td>
</tr>
<tr>
<td>Atlas</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Axis</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Sacrum</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Scapula</td>
<td>5</td>
<td>7</td>
<td>-</td>
<td>12</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Pelvis</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>Humerus</td>
<td>44</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>189</td>
<td>26</td>
</tr>
<tr>
<td>Mandible</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>26</td>
<td>148</td>
<td>18</td>
</tr>
<tr>
<td>Atlas</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>Axis</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>Sacrum</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Scapula</td>
<td>5</td>
<td>7</td>
<td>-</td>
<td>12</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>Pelvis</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>48</td>
<td>17</td>
</tr>
<tr>
<td>Humerus</td>
<td>44</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>189</td>
<td>26</td>
</tr>
<tr>
<td>Femur</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>115</td>
<td>10</td>
</tr>
<tr>
<td>Tibia</td>
<td>16</td>
<td>4</td>
<td>1</td>
<td>21</td>
<td>230</td>
<td>9</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>17</td>
<td>3</td>
<td>-</td>
<td>20</td>
<td>64</td>
<td>31</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>15</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>72</td>
<td>8</td>
</tr>
<tr>
<td>Metapodial</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Calcanium</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Phalange</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>46</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>134</td>
<td>67</td>
<td>11</td>
<td>212</td>
<td>1428</td>
<td>15</td>
</tr>
</tbody>
</table>

Figure 4. Examples of goat bones with traces of butchering under a Veho USB microscope with x40 magnification: (a) specimen showing cut marks on the distal epiphysis of a humerus, (b) specimen showing evidence of cut marks on a distal metapodial, (c) chop and cut mark on a severely weathered long bone mid-shaft, and (d) chop mark on a tibia mid-shaft with low sun exposure.
Table 5. Distribution of butchering marks on goat long bones from Gobabeb.

<table>
<thead>
<tr>
<th>Element</th>
<th>Proximal Articulation</th>
<th>Proximal-Shaft</th>
<th>Mid-Shaft</th>
<th>Distal-Shaft</th>
<th>Distal Articulation</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humerus</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>27</td>
<td>50</td>
</tr>
<tr>
<td>Femur</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>Radius - Ulna</td>
<td>4</td>
<td>15</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Tibia</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>3</td>
<td>11</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>3</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Metapodial</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 6. Comparisons between the frequency of butchery marks on the goats from Gobabeb (Tables 4-5) and the physical damage observed by Brain (1969).

<table>
<thead>
<tr>
<th>Element</th>
<th>Frequency of Butchery Marks Recorded</th>
<th>Damage Noted by Brain (1969)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skull, Maxilla</td>
<td>High</td>
<td>Horns broken off; occiput smashed; snout and palate broken off</td>
</tr>
<tr>
<td>Mandible</td>
<td>High</td>
<td>Undamaged</td>
</tr>
<tr>
<td>Atlas</td>
<td>High</td>
<td>Remained attached to the occiput</td>
</tr>
<tr>
<td>Axis</td>
<td>High</td>
<td>Part remained attached to the atlas</td>
</tr>
<tr>
<td>Sacrum</td>
<td>High</td>
<td>Undamaged</td>
</tr>
<tr>
<td>Scapula</td>
<td>High</td>
<td>Undamaged</td>
</tr>
<tr>
<td>Pelvis</td>
<td>High</td>
<td>Chopped through pubis and across the acetabulum</td>
</tr>
<tr>
<td>Humerus</td>
<td>High</td>
<td>Proximal ends chewed away; shafts broken; distal ends undamaged</td>
</tr>
<tr>
<td>Femur</td>
<td>Low</td>
<td>Proximal ends removed and proximal shafts chewed; shafts broken; distal ends removed and distal shafts chewed</td>
</tr>
<tr>
<td>Radius - Ulna</td>
<td>High</td>
<td>Shattered by stone</td>
</tr>
<tr>
<td>Tibia</td>
<td>Low</td>
<td>Shafts broken; damage to proximal and distal ends</td>
</tr>
<tr>
<td>Metacarpal</td>
<td>High</td>
<td>Proximal ends complete; distal ends removed and distal shafts chewed</td>
</tr>
<tr>
<td>Metatarsal</td>
<td>Low</td>
<td>Proximal ends complete; distal ends removed and distal shafts chewed</td>
</tr>
<tr>
<td>Metapodial</td>
<td>Low</td>
<td>-</td>
</tr>
<tr>
<td>Calcanium</td>
<td>Low</td>
<td>Undamaged</td>
</tr>
<tr>
<td>Phalange</td>
<td>Low</td>
<td>Undamaged</td>
</tr>
</tbody>
</table>
sheep were also slaughtered using metal knives, thus providing comparable data. Faunal material recovered from archaeological sites in southern Africa is usually very fragmented (e.g., Voigt 1983). At Gobabeb, the specimens are large, which may have contributed to an increased visibility of butchery evidence. Moreover, archaeological samples contain a variety of animals, and some smaller taxa may not have been butchered at all, but roasted whole over coals (e.g., Henshilwood 1997), potentially biasing any comparisons between Gobabeb and archaeological samples.

Moreover, the reason(s) why butchery marks are more frequent on the goat remains from Gobabeb is complex and likely multi-faceted. Like many other pastoralist communities in Africa, the Khoekhoe of Gobabeb live in an arid environment that does not support crop cultivation, and people rely mainly on milk, blood, and meat (Brain 1967a, b; 1969). Once goats are slaughtered, people consume all edible parts (Brain, 1967a, b). Consequently, this intense utilisation of a carcass may have contributed to a high number of butchery marks as people removed as much meat, sinew, and ligaments as possible.

Various factors affect tenderness of meat, including breed, age, sex and diet (e.g., Schönfeldt et al., 1993), which likely cause variation in butchery frequency on skeletal elements (Badenhorst 2012). In the Gobabeb sample, some butchery marks are seemingly inflicted randomly. For example, some bones have cross-sectioned cut marks, while others have deep chop marks inflicted randomly on mid-shafts and epiphyseal ends. These marks may suggest the involvement of different butchers (Stiner et al., 2009). The lower leg bones are cooked separately by children at Gobabeb (Brain 1967b). This may suggest the possibility that butchery marks were produced by both adult butchers and, potentially, children. The Khoekhoe skin and dismember a goat while the carcass is suspended by its feet from a branch (Brain, 1969). It is possible that different positions of the carcass during butchering produce different frequencies of butchery marks (Cruz-Uribe & Klein 1994; Leenen 2011).

The relative higher incidence of butchery marks on the goat remains from Gobabeb compared to Early and Middle Iron Age samples is likely due to a combination of factors. Some of the most pertinent factors include the butchering method and style as well as the large size of the specimens themselves.

ACKNOWLEDGEMENTS

We thank the DSI-NRF Centre of Excellence in Palaeoscience (CoE-Pal) and the Palaeontological Scientific Trust (PAST) for financial support. We also thank the Ditsong National Museum of Natural History for access to the collection. Two anonymous
reviewers provided constructive suggestions and improvements. However, any remaining oversights remain our responsibility.
REFERENCES

INSTRUCTIONS TO AUTHORS

INDAGO GUIDELINES

SCOPE

Indago: investigating nature and humanity in Africa. The name is taken from the Latin term for investigate or explore. *Indago* is an accredited, open-access journal that seeks to promote knowledge of natural and cultural heritage by publishing high-quality, peer-reviewed scientific research. Previously known as *Navorsinge van die Nasionale Museum*, *Indago* is published annually for the National Museum, Bloemfontein, South Africa. Manuscripts relevant to all topics of the natural and social sciences in Africa are accepted, including but not limited to botany, zoology, palaeontology, archaeology, anthropology, history, fine arts. Accepted manuscripts are published online, freely accessible through the museum webpage (www.nationalmuseumpublications.co.za) with a unique digital object identifier (doi). Hardcopy issues are published yearly.

INDAGO EDITORIAL POLICY

Manuscripts containing original research results consistent with the scope of the journal will be considered. All submissions should be in English language. There is no page limit, however, additional charges may be levied on manuscripts in excess of 200 pages. Authorship is open to persons not directly associated with the National Museum and/or those not based on study collections of the museum, but those authors may on occasion be requested to contribute to the costs of publication (see page charges for an estimate of costs). Special issues and conference proceedings are accepted with special permission from the editor. Submission of a manuscript will be taken to imply that the material is original and that no similar manuscript is being or will be submitted for publication elsewhere. Authors will bear full responsibility for the factual content of their publications. All contributions will be critically reviewed (double-blind) by at least two appropriate external referees. Submissions may include online supplementary material.

Indago recognises the need for transformative research that does not perpetuate stereotypes, discriminatory practises or undermine the rights and dignity of marginalised communities (whether defined on the basis of race, ethnicity, sexual orientation, gender, religion or disability).

Indago acknowledges the need to dismantle systemic racism and discrimination and will not entertain material that expresses bias or prejudice or that misuses science to perpetuate colonial misconceptions and inequalities.

Indago reserves the right to reject manuscripts that perpetuate biases or inequalities and to subject any submissions relating to marginalised communities to a greater degree of academic scrutiny (beyond the review scope already outlined in this document) at the discretion of the editorial committee.

The editorial committee’s decision whether or not to accept a manuscript is final. Contributions should be e-mailed (indago@nasmus.co.za) to: The Editor-in-Chief, Indago, National Museum, P.O. Box 266, Bloemfontein, 9300, South Africa.

SUMBSESSION OF MANUSCRIPTS

Manuscripts should be submitted in Microsoft Word, 12 pt Times New Roman font, 1.5-spaced and in A4 format with 25 mm margins all around. Manuscripts should be submitted by e-mail (indago@nasmus.co.za) to the editor. Submitted manuscripts should not exceed 200 pages (including illustrations). All pages should be numbered serially (top right) starting with the title page. Tables with captions should be submitted on separate pages. Preferred position of tables and illustrations in the text must be indicated in capitals. English spelling should follow the Oxford English Dictionary. Consult a recent issue of the Journal for typographic conventions (www.nationalmuseumpublications.co.za). The final accepted and updated manuscript should also be submitted electronically.

Where research has been conducted (through experimentation, survey or in any other way) with live animal or human participants, ethical clearance should have been acquired from the relevant institution or authority. *Indago* reserves the right to request documented proof of ethical clearance prior to considering a manuscript. Should a successfully reviewed and published manuscript garner criticism, the author will have the opportunity for reply and rebuttal in a later issue of the journal.

Authors should carefully study the latest edition of *Indago* for guidance as to the conventions to be followed in the text, tables, figures, titles, legends, references etc.
Layout should be arranged as follows:

(a) Title: Must be concise and specific.
(b) The name(s), and address(es) of author(s). The email address of the corresponding author should also be provided.
(c) Number of figures in the text should be indicated in parentheses.
(d) Abstract: An abstract of 300 words or less must be included. A maximum of eight key words may be included at the end.
(e) The main text: This should be divided into principal sections with major headings. Sub-headings should be used sparingly. The headings of a section or chapter must be typed in upper case bold and all headings of sub-sections in lower case bold type.
(f) Acknowledgements.
(g) References (see below).
(h) Gazetteer, appendices, etc. (if applicable).

ILLUSTRATIONS

(a) Figures must be submitted as a PDF binder.
(b) High resolution images or graphics (minimum 500 dpi) should be provided electronically only once the manuscript has been accepted for publication.
(c) Tables and figures submitted should not be larger than A4 format, and each figure and table should have a title. In the text these should be abbreviated as Fig. 1, Figs 3 & 4.

REFERENCES

(a) Author’s name and year of publication cited in the text are not to be separated by a comma, e.g. (Smith 1969).
(b) Use suffixes e.g. a, b after the year for more than one paper by the same author in that year.
(c) Where multiple authorship is cited use an ampersand (&) instead of and in the text and reference list.
(d) For books, give title (in italics), edition (ed.) and volume number (if any).
(e) The title of a journal should be written in full and italicised.
(f) Series should appear in parentheses, e.g. Ser. (II); volume number in bold; and part of volume in parentheses (separated from volume number by a single space).
(g) Page ranges must be separated by an en dash, not a hyphen.
(h) Only capitalise the initials of proper names in the titles of articles and books.

Examples (note capitalisation and punctuation):

For listing references in History articles, see previous editions of *Indago*. The Chicago method of reference, with footnotes, is used; a separate list of references or bibliography is not required. When a reference is used for the first time in a footnote it should be written in full and should include, in parentheses, the place and year of publication, separated by a comma.

NOTES

If essential, notes must be indicated by serial superscripts in the text and in order of citation at the foot of the relevant page. Footnotes must also be separated from the text by a horizontal line.

ZOOLOGICAL NOMENCLATURE

This is governed by the rulings of the latest International Code of Zoological Nomenclature issued by the International Trust for Zoological Nomenclature (particularly articles 22 & 51). The Harvard System of reference should be used in
synonymy lists and full references should be incorporated under REFERENCES and not given in contracted form in the synonymy list.

GENERAL

(a) Italicise foreign words and scientific names (genus and species).

(b) Specific epithets should be preceded by the generic name or its initial, e.g. *Rattus norvegicus* or *R. norvegicus* and not just *norvegicus*.

(c) Vernacular names should be accompanied by the appropriate scientific names the first time each is mentioned. Each word in the vernacular name of a species should start with a capital letter in the text, e.g. House Sparrow, Fork-marked Sand Snake, but must be lower case where no species in particular is being referred to, e.g. sparrow, sand snake.

(d) Numbers one to nine inclusive should be spelled out and number 10 onwards given in numerals. In a series, use numerals throughout.

(e) Dates should be written as 4 August 1974 and times of the day as 08:00.

(f) When giving ranges of numbers use en dashes, not hyphens.

(g) When four or more authors are cited in the text, quote the surname of the first followed by *et al.* and the date. Note that in the list of references the names of all authors should be given.

PAGE CHARGES

Page charges and costs of colour plates will be levied on manuscripts submitted by contributors who are not employed at the National Museum (or when no museum employee is a co-author) or when the collections of the museum have not been studied. These charges will be levied at the time of final submission and are subject to change without notice.

PROOFS AND REPRINTS

Proofs will be sent to the corresponding author, who should consult with co-authors. The senior author accepts final responsibility for corrections. Corrected proofs should be returned within two weeks. A PDF file of the manuscript will be e-mailed to the corresponding author once published online. In addition, 15 reprints are supplied free of charge to the corresponding author if requested.
Indago

VOLUME 32 2016

Neethling J.A. & Haddad C.R. A systematic revision of the South African pseudoscorpions of the family Geogarypidae (Arachnida: Pseudoscorpiones) .. 1

Conradie, W., Reeves, B., Brown, N. & Venter, J.A. Herpetofauna of the Oviston, Commando Drift and Tsolwana nature reserves in the arid interior of the Eastern Cape Province, South Africa ... 81

Haasbroek, H. Henry Selby Msimang en die loonagitasie van 1919 in Bloemfontein ... 119

VOLUME 33 2017

Erasmus, P.A. & De Graaf, B.J.H. ‘They say a Dog wears a Ticket’ – Legal Classification instead of Self-Identification 1

Moodley, S. Soldiers of the Koma ... 13

De Klerk, J.J. & Avenant, N.L. Further evidence in support of small mammals as ecological indicators in areas cleared of alien vegetation in South Africa ... 49

VOLUME 34(1) 2018

Bates, M.F. & Broadley, D.G. A revision of the egg-eating snakes of the genus Dasypeltis Wagler (Squamata: Colubridae: Colubrinae) in north-eastern Africa and south-western Arabia, with descriptions of three new species ... 1

VOLUME 34(2) 2018

Haasbroek H. Die trem-geskiedenis van Bloemfontein, 1915–1937 .. 97

Bates, M.F. Catalogue of reptiles from Mozambique in the collection of the National Museum, Bloemfontein, South Africa ... 135

VOLUME 35 2019

Zietsman P.C. & Zietsman L.E. Floristic diversity at Kolomela mine on the Ghaap Plateau, Postmasburg, Northern Cape Province ... 1
RESEARCH ARTICLES
NATURAL SCIENCES
The Frequency of Butchery Marks on Goat (Capra hircus) Remains from Pastoral Khoekhoe Villages at Gobabeb, Namibia
Shaw Badenhorst & Jackson S. Kimambo.. 1–12